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Optimization and evaluation of a proportional derivative controller for planar 
arm movement 

Kathleen M. j agodnik a.b.*, Antonie J. van den Bogert .l,b 

• Department of Biomedkal Engineering. Casl' Wes/em R~erv.. University, neveland. OH. USA 
b Depal1ment of Biomedical Enginef'ring (ND20), /.emer Research Ins/;Iml'. 9500 Euclid Avenue. Cleve/and Clinic. Cleveland. OH 44195. USA 

1. Introduction 

High-level (cervical CI - (4 level ) spina l cord injury (SCI ) 
involves the loss of most or all voluntary muscular functio n 
below the neck. In this type of injury, communication between 
the brain and skeletal muscles is impaired, while the peripheral 
neuromuscular system remains intac!. Functional electrical 
stimulation (FES) can restore vol untary movement, but is 
particularly challenging in [he proximal upper extremity (UE ) 
( i.e. shoulder and elbow joints), be<:ause arm reaching movements 
tend to be goa l-oriented and unique, requiring a novel muscle 
st imulation specification for each reaching task. 

To date, FES systems used in humans have most commonly 
employed feedforward, or open-loop, control (Blana et aI., 2009 ; 
Abbas and Triolo, 1997 : Kilgore et a I., 1989 ). Stimulation 
parameters are calculated by the controller to generate a desired 
movement. Feedforward control has been used for upper 
extremity movement including hand grasp (Keith et aI., 1989; 
Mauritz and Peckham, 1987), single-joint arm movements (Lan 
and Crago. 1994 ). and elbow extension (Crago et .1 1.. 1998). 

·Corresponding author at: Departmt'nt or Biomedica l Engin~ring (ND20). 
Lerner Rt'search Institutt'. 9500 Euclid Avt'nue. Clt'yel~nd Clinic. Clevt'land. OH 
441 9S. USA. Tt'I.: + 1 2164443763: fax: + 1 2164449198. 

E-mail addn.'sus: kmj l 00case.edu. kmjagodniklil'gmai l.com. jagodnk(kcf.org 
(K.M. Jagodnik). 

Feedforward control has the advantage that no sensors are 
required, which facilitates rapid movements and greatly simpli­
fies controller implementation in humans. However, drawbacks 
include the inability to make corrections if the actual movement 
deviates from the desired one due to muscle fatig ue or change in 
environment. and the requirement to have detailed system 
behavior in order to produce an accurate movement (Crago 
et .11., 1996). 

Feedback control uses sensors to monitor output and to 
make corrections when the output does not behave as desired 
(Crago et .1 1.. 1996). Feedback has been used for a variety of UE FES 
applications. including hand grasp (Crago et .11.. 1991), wrist 
stabilization (Lemay and Crago, 1997) and elbow extension 
(Giuffrida and Crago. 2001). Feedback control has been invest i­
gated for numerous FES applications. as it addresses many of the 
shortcomings of feed forward control (Crago et .11.. 1996 : Abbas 
and Triolo, 1997). However. because body-mounted sensors are 
required, the use of feedback control in clinical applications has 
been limited (Ch izeck et a I. , 1988). Challenges to the success of 
feedback control include limitations in sensor signal quality. the 
relatively slow response properties of muscles (Abbas and Triolo. 
1997). and inherent delays in system response, which are of 
part icular concern for fast movements (Stroeve, 1996). 

Beyond basic feedback controllers, advanced UE FES control­
lers have also been developed. Such controllers have used a 
variety of techniques. including combined feed forward and 

http:jagodnk(kcf.org
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feedback control (Blana et al., 2009; Kurosawa et al., 2005; Abbas 
and Chizeck, 1995), reinforcement learning (Thomas et al., 2009; 
Izawa et al., 2004), and artificial neural networks (Iftime et al., 
2005; Giuffrida and Crago, 2005; Winslow et al., 2003). To 
demonstrate the superiority of these advanced controllers, these 
highly tuned controllers are often compared to linear propor­
tional-derivative (PD) and proportional-integral-derivative (PID) 
controllers (e.g. Dou et al., 1999; Reiss and Abbas, 2000) that may 
have been suboptimal. Although tuning algorithms such as the 
Ziegler–Nichols (Astrom and Hagglund, 2004; Blana et al., 2009) 
and Chien, Hrones and Reswick (Chien et al., 1952; Kurosawa 
et al., 2005) methods are often used for these linear controllers, 
such controllers cannot be considered optimized; in fact, the 
Ziegler–Nichols tuning often gives very poor results (Astrom and 
Hagglund, 2001), including excessively large overshoots for 
nonlinear processes (Dey and Mudi, 2009). Therefore, simple 
feedback controllers may have been dismissed as inferior, without 
having been tuned or optimized to the same degree as the more 
complex controllers. In this paper, we propose to optimize and 
evaluate a basic PD controller in order to determine the best 
possible performance that this simple controller is capable of, for 
a range of conditions that approximate the physical challenges 
faced by FES subjects. The PD controller architecture is particu­
larly of interest because it recruits muscles according to the 
Equilibrium Point hypothesis, which has been successful in 
explaining basic features of motor control in the intact nervous 
system (Feldman et al., 1998). 

This work, therefore, had two purposes: (1) to optimize a 
proportional derivative controller for a planar, 2-segment arm 
model and (2) to evaluate this optimized controller to determine 
whether it performed well for a range of challenging conditions 
that approximate a real-world set of FES reaching tasks. 

2. Methods 

2.1. Biomechanical model 

The system used for all experiments described in this paper 
was a computational musculoskeletal model that approximated a 
human arm constrained to move in a single horizontal plane, as 
sliding along a tabletop (Fig. 1). Such planar movement is typical 
of FES arm movements that utilize mobile planar arm supports 
(Rahman et al., 2006) and is often used in basic research on arm 
control (e.g. Blana et al., 2009; Lan, 1997; Freeman et al., 2009; 
Dou et al., 1999). The model has two joints (shoulder, elbow) and 
six muscles. The equations of motion are described by 

Mu€ ¼RðuÞFþCðu;u_ Þ ð1Þ 

where M is the mass matrix; u is the vector of shoulder and elbow 
joint angles; R is the 2 x6 matrix of muscle moment arms; F is the 
vector of 6 muscle forces; and C is the vector of gravitational, 
centrifugal and Coriolis effects, and friction. Equations of motion 
were generated by SD/Fast (PTC, Needham, MA). Mass properties 
of both arm segments were taken from (Winter, 2005) and listed 
in Table 1. 

The connection between each muscle and the skeleton was 
modeled by assuming constant moment arms (listed in Table 2), 
which implies a linear relationship between muscle–tendon 
length Lm and joint angles: 

Lm ¼ a0 d1j1 d2j2 ð2Þ 

The four one-joint muscles have only one moment arm, while 
the biceps and long head of the triceps have moment arms at both 
joints. Each muscle was modeled using a standard Hill-based 
approach (Zajac, 1989), in which the contractile element (CE) had 

Fig. 1. Top view of the 2-joint, 6-muscle biomechanical arm model. Y-axis is 
anterior. Movements occur in the sagittal plane with no gravity, as sliding across a 
frictionless tabletop. Antagonistic muscle pairs are as follows, listed as (flexor, 
extensor): monoarticular shoulder muscles: (A: anterior deltoid, B: posterior 
deltoid); monoarticular elbow muscles: (C: brachialis, D: triceps brachii (short 
head)); biarticular muscles: (E: biceps brachii, F: triceps brachii (long head)). j1 

and j2 are shoulder and elbow joint angles, respectively. 
Adapted from (Lan, 1997). Moment arm values: d1=30  cm,  d2=50 cm. 

Table 1 
Mass properties of arm segments. 

Upper arm Forearm 

Mass (kg) 2.24 1.76 
Length (m) 0.33 0.32 
CoM (m)1 0.1439 0.2182 
I0 (kg m2) 0.0253 0.0395 

CoM is distance between center of mass and prescribed joint; I0 is moment of 
inertia with respect to the center of mass. With reference to (Winter, 2005). 

force–length and force–velocity properties as well as activation 
dynamics, and a nonlinear series elastic element (SEE) trans­
mitted muscle force to the skeleton (Fig. 2). Passive muscle force 
was not modeled because it does not play a major role in the 
range of motion that was studied. This muscle model is standard 
in musculoskeletal simulation (Zajac, 1989) and represents each 
muscle by two first-order ordinary differential equations (McLean 
et al., 2003), which were simulated together with the mechanical 
state Eq. (1). The complete set of muscle properties is listed in 
Table 2. 

2.2. Controller and controller optimization 

The proportional derivative (PD) controller generates muscle 
stimulations that are proportional to the errors in joint angles and 
their time-derivatives (Fig. 3). 

The PD controller generates a vector u of six muscle 
stimulation levels according to 

u ¼ Gðs s0Þ ð3Þ 

where G is the 6 [muscles] x4 [sensors] gain matrix, and s are 
sensor values. The four sensors were the joint angles and angular 
velocities for shoulder and elbow, expressed in radians and 
radians per second, respectively. The vector s0 is a matrix of 
sensor targets, with joint angle targets for a specified reaching 
task and joint angular velocity targets equal to 0. Controllers with 
three types of gain matrix G were considered. A 24-parameter 
controller had the full 6 x4 gain matrix, allowing one gain per 
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Table 2 
Muscles used in the model and their properties. 

MUSCLE Fmax (N) LCEopt (m) Lslack (m) d1 (m) d2 (m) a0 

Anterior Deltoid 800 0.1280 0.0538 0.05 0 0.1840 
Posterior Deltoid 800 0.1280 0.0538 0.05 0 0.1055 
Biceps Brachii 1000 0.1422 0.2298 0.03 0.03 0.4283 
Triceps Brachii (long head) 1000 0.0877 0.1905 0.03 0.03 0.1916 
Triceps Brachii (short head) 700 0.0877 0.1905 0 0.03 0.2387 
Brachialis 700 0.1028 0.0175 0 0.03 0.1681 

Fmax is the maximum force that the muscle is able to generate. LCEopt is the optimal length of the contractile element, and Lslack is slack length of the muscle; both values 
were taken from Garner and Pandy (2003). d1 and d2 are moment arms for the shoulder and elbow joints, respectively (Bhushan and Shadmehr, 1999). a0 is the muscle 
length when both joint angles are 0; this anatomical parameter was chosen such that maximum isometric force is generated at similar joint angles as in human subjects 
(Kulig et al., 1984). 

Fig. 2. Hill muscle model. CE is contractile element; SEE is series elastic element. 
LCE is length of the contractile element. 

muscle for each of the four sensors to be specified. The 
16-parameter controller removed 8 parameters from the 
24-parameter controller: for monoarticular muscles, gains corre­
sponding to errors in the joint not directly controlled by that 
muscle were set to zero. The 2-parameter controller was similar 
to the 16-parameter version, except that all angle gains and all 
angular velocity gains had the same value. 

Optimal controller gains G were found by minimizing a cost 
function consisting of an error term representing cumulative distance 
to the reaching target and an effort term derived from the amount of 
muscle force used. These costs were summed across a number of 
reaching movements. Specifically, the cost function is given by 

ð4Þf ðGÞ ¼  ferror þWfeffort 

where ferror and feffort are vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi u ZNm 2 T u XX1 jtarget tferror ¼ 
2TNm 

ðjijðtÞ ij Þ
2 dt ð5Þ 

i ¼ 1 j ¼ 1 0 

vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi u ZNm 6 T u XX tfeffort ¼ 
1 

ðFijðtÞÞ
2 dt ð6Þ 

6TNm 0i ¼ 1 j ¼ 1 

where jij is the angle of joint j for movement i in degrees, jtarget are ij 
the target joint angles, Fij is  the muscle force of  muscle  j for 
movement i in Newtons, and T is duration of the simulated 
movement. T was arbitrarily chosen to be 2 s, which allowed 
sufficient time for  the completion of both normal human reaching 
movements (approx. 0.5 s) (Gottlieb et al., 1997), as well as 
potentially slower movements resulting from weakening of muscles. 
The cost functions were calculated over a set of Nm =12 reaching 
tasks, representing all possible movements with each joint angle 
starting or ending at 201 or 801. The  weight  W was set to 0.051 N 1, 
based on preliminary work that showed that this caused neither 
term to be dominant in the cost function during optimization. If the 
weight was set too low, controller optimization produced higher 
gains, causing faster arm movements but oscillatory muscle activity 
rather than a relaxed steady state after reaching the target. 

Optimizations were performed using the simulated annealing 
algorithm (Goffe et al., 1994). The temperature reduction factor of 
the simulated annealing algorithm set to reduce the temperature 
by 10% each time after 100 random variations in all parameters. If 

the ‘‘temperature’’ (and consequently, cost function fluctuations) 
fell below 10 6, the optimization was terminated and considered 
complete. All controller gains were constrained between a lower 
bound of 2 and an upper bound of 2. These gains are equivalent 
to producing full muscle stimulation at a position error of 0.5 
radians or a velocity error of 0.5 radians per second. 

2.3. Simulation experiments 

2.3.1. Effect of controller architecture 
In this investigation, the type of gain matrix used in the PD 

controller was varied, from 2 independent parameters, to 16, to 
24. Gain parameters for each of the three controllers were 
optimized as described above. To determine whether a global 
optimum was found, we performed two optimizations of each 
controller, differing only by the random number seed used by the 
simulated annealing algorithm. 

2.3.2. Generality test 
To test the ability of the controllers to perform tasks for which 

they had not been optimized, each of the three optimized 
controllers was applied to a set of 1000 randomly generated 
reaching tasks that had not been included in the 12-task set. Each 
task specified an initial and target joint angle between 201 and 801 
for both shoulder and elbow. 

2.3.3. Robustness test 
To investigate the robustness of the controllers, each of the 

six muscles included in our model was randomly weakened 
(maximal force was allowed to range between 0% and 100% of 
nominal muscle strength) to simulate muscle fatigue or atrophy, 
and the three already optimized controllers were applied to the 
1000 randomly generated tasks as described above. 

2.3.4. Added-friction test 
To investigate controller performance in the presence of 

friction, as in an arm brace or when an arm slides along a 
tabletop, a frictional moment of 1.0 N m was applied to both 
joints in the arm, and the set of 1000 reaching tasks used above 
was performed. This friction value is within the range found in 
assistive devices (Tickel et al., 2002). 

2.3.5. Doubled-mass test 
To test the viability of the controller should mass properties of 

an actual subject substantially differ from the modeled values, the 
mass of the arm was doubled, and the same 1000 reaching tasks 
test were again performed. 

In all of the above tests, we defined a failed trial as a 
movement in which one or both joints were not within 51 of their 
target angle after 2 s. For trials that did not fail, steady-state (SS) 
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Fig. 3. PD controller architecture. j1 and j1_target are actual and target shoulder angles, respectively. j2 and j2_target are actual and target elbow angles, respectively. u(6) 
are muscle stimulation values. 

Table 3 
Performance of the 3 optimized PD controllers (W=0.05) on the 12 reaching task 
set. 

Controller (# parameters) Cost function Error (deg.) Effort (N) 

24 13.69 11.54 42.99 
16 13.94 11.57 47.38 
2 14.51 11.93 51.66 

Values are averaged over 12 movements. Error and Effort values are calculated 
from (5) and (6), respectively. 

error was defined using (5), with the integration starting when 
both joint angles are within 51 of their target angles. Furthermore, 
error and effort were quantified using Eqs. (5) and (6). 

3. Results 
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3.1. Effect of controller architecture 

Optimized cost function values were lower with increasing 
number of controller parameters (Table 3). Fig. 4 shows joint 
angles and muscle forces and activations for a single reaching task 
performed by the optimized 24-parameter controller. Animations 
of the optimized 24- and 2-parameter controllers performing the 
set of 12 reaching tasks are included as Electronic Supplementary 
Material. Optimized gains were similar for repeated optimizations 
with a different random number seed. The largest differences 
between corresponding gains for different optimizations of the 
same controller were 9.27%, 12.01% and 0.12% for 24-, 16- and 
2-parameter controllers, respectively. Optimized gain values for 
all 3 controllers are provided in the supplementary appendix. 

3.2. Generality test 

Results of the generality test, in which the optimized 
controllers were applied to a set of 1000 randomly generated 
reaching tasks, are shown in Table 4. Error values were slightly 
lower for the more complex controllers, indicating better 
generalization to new movement tasks. There were no failed 
trials for any of the controllers (Table 4). 

3.3. Robustness test 

Table 4 also presents results from the robustness test, in which 
muscles were randomly weakened. Similar to the results of the 

time (s) 

Fig. 4. Optimized (W=0.05) 24-parameter controller outputs for the (201 shoulder, 
201 elbow) to (801, 801) reaching task: (a) shoulder and elbow joint angles; (b) 
muscle forces and (c) muscle activations. 

generality test, the controllers with more independent parameters 
performed better on all performance measures. 

3.4. Added-friction test 

When friction was added, error for each controller increased 
slightly, compared to corresponding values for the generality test 
on the unaltered model, while effort values were similar (Table 4). 
However, steady-state error increased to around three times its 
value for the generality test. The number of failed trials was 
relatively small, and decreased as number of controller para­
meters increased (Table 4). 

3.5. Doubled-mass test 

Error values for the doubled-mass condition were slightly but 
consistently larger than error values for the analogous generality 
and added-friction tests (Table 4). Steady-state error was slightly 
but consistently larger than values for the generality test. Effort 
values were approximately 37–39% larger than generality test 
values. All trials in the doubled-mass condition were successful 
(Table 4). 
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Table 4 
Tests of the 3 PD controllers. 

PD controller (# of parameters) Test Error (deg.) SS Error (deg.) Effort (N) # of Failed Trials (out of 1000) 

24 Generality 5.29 1.03 22.18 0 
Robustness 7.28 3.95 15.69 107 
Added friction 5.62 2.97 22.29 2 
Doubled mass 5.98 1.23 30.91 0 

16 Generality 5.32 1.09 23.26 0 
Robustness 7.41 4.41 15.99 117 
Added friction 5.70 3.00 23.61 6 
Doubled mass 6.02 1.40 31.88 0 

2 Generality 5.50 1.17 25.10 0 
Robustness 7.51 4.59 17.31 122 
Added friction 6.08 4.06 26.83 14 
Doubled mass 6.18 1.55 34.50 0 

Values are averaged over 1000 movements. Error (ferror) and Effort (feffort) values are calculated from (5) and (6), respectively. Precision of movement is quantified by the 
steady-state (SS) error values, which are an average of shoulder and elbow. The steady-state phase is defined as beginning when both joints reach within 51 of their target 
angles, and remain within 51 of the target for the remainder of the movement. SS error values are calculated only from successful trials. Failed trials are defined as those in 
which either joint angle fails to attain a position within 51 of its target within the two second duration of the trial. Added friction was 1.0 N m. 

4. Discussion 

We designed a PD controller for a 2-segment, 6-muscle UE 
model with Hill-type muscle properties. After optimization of 
feedback gains to minimize a combination of error and effort, arm 
movement generated by this controller in simulations (Fig. 4) was 
similar to typical human performances: smooth and sigmoid-
shaped joint angle curves (Gottlieb et al., 1997), and the 
completion of movements was on a similar time scale as in 
humans (Wadman et al., 1980). Joint moments showed accelera­
tion followed by deceleration, corresponding to alternating 
agonist and antagonist muscle activities. 

In practical applications, angular velocity information may be 
noisy due to differentiation of angle sensor signals. We therefore 
also tested a proportional-only (P)-controller and found that it 
produced slower movements with overshoot of the target 
position. While muscle fibers (the contractile element in the 
model) provide damping, the series elastic coupling to the 
skeleton makes this less effective to stabilize arm movement. 
We conclude that derivative information is necessary to damp 
movements, but care must be taken to filter sensor signals to 
prevent noise from affecting performance. A PID controller 
was also investigated because of its potential to reduce steady-
state error. We found that a PID controller could leave 
muscles activated when the reaching target has been achieved, 
which is a consequence of having more actuators than degrees of 
freedom. 

While the more complex 24-parameter controller performed 
best for all controller tests performed, the differences were small 
(Table 4), and the 2-parameter controller with identical gains for 
all muscle–joint combinations may be preferred in clinical 
applications because of simpler tuning. 

As expected, muscle weakness in the robustness test decreased 
the speed and accuracy of movements compared to generality test 
results (Table 4), as shown by larger error values. In contrast, 
average effort decreased for the robustness test, due to the lower 
muscle forces generated by the weakened muscles. Movements 
were still generally accurate but approximately 10% of the 
simulated movements failed to reach within 51 of the target 
angles (Table 4). From inspection of these failed trials, we found 
that most occurred when the difference between the initial joint 
angle and the target joint angle was very small for one or both 
joints; the set of 12 reaching tasks on which the PD controllers 
had been optimized had not included any small-angle reaching 

tasks. Had a wider diversity of reaching tasks been included in the 
optimization, these failures may have been avoided. 

Friction caused an increase in steady-state error because the 
arm tends to ‘‘stick’’ when close to the target, because the PD 
controller generates insufficient muscle activity to overcome 
friction. This would affect precision of movements. Increased 
mass mainly caused slower movements, but no loss of precision. 
The results of the muscle weakening, friction and doubled-mass 
experiments (Table 4) demonstrate that performance of the 
optimized PD controller may be satisfactory, even when applied 
to a system that is very different from the model for which it was 
optimized. 

The model on which experiments were performed is a 
simplification of human arm dynamics. While the muscle model 
is standard (Zajac, 1989), it does not represent certain known 
properties of muscle, such as history-dependent effects (Herzog, 
2004). Such effects would be somewhat similar to muscle 
weakness and friction, so we expect the controller to be robust 
with respect to these muscle properties, but further research is 
needed to confirm this. 

5. Conclusion and future directions 

By optimization on a biomechanical arm model, a PD 
controller was designed that produced accurate and efficient 
arm movements. It was found to be important that the optimality 
criterion consist of appropriately weighted contributions of 
position error and muscular effort. Without much loss of 
performance, the feedback gain matrix could be simplified by 
having only two independent gain parameters, one for angle error 
and one for its derivative, and by eliminating feedback from joints 
not directly controlled by a muscle. The optimized controllers 
performed well for all reaching movements within the range of 
motion, even in the presence of muscle weakness, friction, and 
added mass. 
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