

Anne D. Koelewijn and Antonie J. van den Bogert Parker Hannifin Laboratory for Human Motion and Control Department of Mechanical Engineering, Cleveland State University

INTRODUCTION

- Deterministic Models cannot predict gait sufficiently [1]
- Noise is important for certain human movement strategies [2,3]
- Long term goal: predictive simulations of human movement using stochastic dynamics.

Goals of this study:

Propose method to find an optimal trajectory in a stochastic environment

- Show that this method finds a different optimal trajectory in a stochastic environment
- Show that muscle co-contraction minimize effort in certain tasks in a stochastic environment

METHODS

Proposed Stochastic Optimization Approach

Minimize	$\frac{1}{M} \sum_{i=1}^{M} J_j(x, u)$	Objective

Subject to Dynamics Constraints

$$g_h(x) = 0$$
 Task Constraints

- Dynamics constraints: Direct collocation with backward Euler formulation
- Task constraint depends on problem
- Average over number of episodes
- Periodicity constraint
- Requires Feedback Control

Verification Using Pendulum

A one degree of freedom pendulum is used to verify the proposed stochastic optimization method.

Pendulum Dynamics:

$$\dot{x} = \begin{bmatrix} \theta & \dot{\theta} \end{bmatrix}^{T}$$

$$\dot{\theta}$$

$$-\frac{mgl}{I}\cos(\theta) + \frac{T}{I} + \varepsilon \sim N(0, \sigma^{2})$$

Muscles

Two similar Hill-type muscles are used for goal 2:

$$x = \begin{bmatrix} \theta & \dot{\theta} & l_{CE_1} & l_{CE_2} & a_1 & a_2 \end{bmatrix}^T$$

$$F_{CE} = a(u)F_{max}f_{FL}(l_{CE})f_{FV}(\dot{l}_{CE})$$

with the following force-length and force-velocity relationships

PENDULUM SWING-UP

Objective: average minimal torque

$$J(x,u) = \frac{1}{2M} \sum_{j=1}^{M} \sum_{i=1}^{N} u_{j}(i)^{2}$$

Task constraints: average trajectory of all episodes is a swing-up

$$x(0) + \left[\frac{\pi}{2}\right] = 0,$$

$$\frac{1}{M} \sum_{j=1}^{M} x(N) - \begin{bmatrix} \frac{\pi}{2} \\ 0 \end{bmatrix} =$$

- Find required number of episodes
- Optimize trajectory in deterministic and stochastic environment

The torque is the input:

$$T = u = u_0(t) + Kx(t)$$

Theoretically, the stochastic problem is solved as the number of episodes M goes to infinity. This figure shows that for this problem, M=20 is sufficient. The mean and standard deviation (solving multiple instances of the stochastic problem) are no longer changing.

Average objective as a function of the number of episodes

Optimal trajectories with increasing standard deviation

The optimal trajectories are plotted for different magnitudes of the noise. With increasing noise, the swing-up occurs later. The pendulum avoids spending time in unstable postures $(\theta > 0)$, which would be costly in a stochastic environment.

Conclusions

Successful verification of the proposed approach to solve predictive simulations in a stochastic environment:

- A different optimal trajectory was found in a stochastic environment than in a deterministic environment
- Co-contraction minimizes effort in tasks where increasing stiffness is less costly than compensating for errors

Implementation of approach on predictive simulations of gait.

- Improve predictions of normal walking
- Explain co-contraction reported in transtibial amputee gait [4]

RESULTS

Objective: maintain upright position with minimal effort

$$J(x,u) = \sum_{i=1}^{N} W\left(\theta(i) - \frac{\pi}{2}\right)^{2} + \sum_{k=1}^{2} u_{k}(i)^{2}$$

Task constraint: periodic motion

g(x) = x(1) - x(N+1) = 0

Show that co-contraction minimizes effort for certain tasks

For each muscle:

$$u_k = u_{0,k} + K_k x > 0$$
 A nonzero u_0 in the muscle

A nonzero u_0 in the muscles means that there is cocontraction

Amount of co-contraction in the muscles for different standard deviation of the noise and weight of the objective

CO-CONTRACTION

Co-contraction requires less effort than only feedback in a task where the aim is to keep the pendulum in an upright position.

REFERENCES

- [1] M. Ackermann, and A. J. van den Bogert (2010). J Biomech 43-6: 1055-1060.
- [2] J. M. Donelan et al. (2004). J Biomech 37-6: 827-835.
- [3] M. J. Hiley and M. R. Yeadon (2013). Hum Mov Sci 32-1: 181-191.
- [4] E. Isakov et al. (2000). Prosthet Orthot Int 24-3: 216-220

This research was supported by the National Science Foundation under Grant No. 1344954 and by a graduate scholarship from the Parker-Hannifin cooperation.